q^2-80q+500=0

Simple and best practice solution for q^2-80q+500=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2-80q+500=0 equation:



q^2-80q+500=0
a = 1; b = -80; c = +500;
Δ = b2-4ac
Δ = -802-4·1·500
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{11}}{2*1}=\frac{80-20\sqrt{11}}{2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{11}}{2*1}=\frac{80+20\sqrt{11}}{2} $

See similar equations:

| 4m=20= | | 3/2(x-3)=-5 | | 9|x+4|=54 | | 24=v/3+6 | | 3x(2x)+1=25 | | 3/2(x-3)=0 | | 6v-3v=3 | | s/5{+125=2225 | | 35=3w+4w | | X+(x•3)+(x•3-23)=180 | | 14/x=4/6 | | u+3.8=3.71 | | 3(x+-4)=2x+6 | | 4m=9+5m | | 10−2t=-t | | -34=-x/9 | | -38=-x/6 | | -30=j+56 | | X+x+135+135=360 | | /x^2+10x+38=8 | | 2x2-8x+2=0 | | 8+2x=-(3x+4)+2 | | d=d=d-d | | 86=5x-4 | | 6x-30=-78 | | 3.0x-7.2-3.6x=12 | | 4x+22=-31 | | −x+15=−2 | | 1/3(x=-9)=2x+7 | | 3/4t-6=42 | | 12x-6x+180=12x+78 | | −x+7=−8 |

Equations solver categories